(0) Obligation:

Clauses:

overlap(Xs, Ys) :- ','(member(X, Xs), member(X, Ys)).
member(X1, []) :- ','(!, failure(a)).
member(X, Y) :- head(Y, X).
member(X, Y) :- ','(tail(Y, T), member(X, T)).
head([], X2).
head(.(H, X3), H).
tail([], []).
tail(.(X4, T), T).
failure(b).

Query: overlap(g,g)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

memberA(T37, .(T37, T38)).
memberA(T44, .(T51, T52)) :- memberA(T44, T52).
pB(T16, .(T16, T17), T6) :- memberA(T16, T6).
pB(X97, .(T61, T62), T6) :- pB(X97, T62, T6).
overlapC(T5, T6) :- pB(X9, T5, T6).

Query: overlapC(g,g)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
overlapC_in: (b,b)
pB_in: (f,b,b)
memberA_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

overlapC_in_gg(T5, T6) → U4_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T16, .(T16, T17), T6) → U2_agg(T16, T17, T6, memberA_in_gg(T16, T6))
memberA_in_gg(T37, .(T37, T38)) → memberA_out_gg(T37, .(T37, T38))
memberA_in_gg(T44, .(T51, T52)) → U1_gg(T44, T51, T52, memberA_in_gg(T44, T52))
U1_gg(T44, T51, T52, memberA_out_gg(T44, T52)) → memberA_out_gg(T44, .(T51, T52))
U2_agg(T16, T17, T6, memberA_out_gg(T16, T6)) → pB_out_agg(T16, .(T16, T17), T6)
pB_in_agg(X97, .(T61, T62), T6) → U3_agg(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
U3_agg(X97, T61, T62, T6, pB_out_agg(X97, T62, T6)) → pB_out_agg(X97, .(T61, T62), T6)
U4_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapC_out_gg(T5, T6)

The argument filtering Pi contains the following mapping:
overlapC_in_gg(x1, x2)  =  overlapC_in_gg(x1, x2)
U4_gg(x1, x2, x3)  =  U4_gg(x3)
pB_in_agg(x1, x2, x3)  =  pB_in_agg(x2, x3)
.(x1, x2)  =  .(x1, x2)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x1, x4)
memberA_in_gg(x1, x2)  =  memberA_in_gg(x1, x2)
memberA_out_gg(x1, x2)  =  memberA_out_gg
U1_gg(x1, x2, x3, x4)  =  U1_gg(x4)
pB_out_agg(x1, x2, x3)  =  pB_out_agg(x1)
U3_agg(x1, x2, x3, x4, x5)  =  U3_agg(x5)
overlapC_out_gg(x1, x2)  =  overlapC_out_gg

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

overlapC_in_gg(T5, T6) → U4_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T16, .(T16, T17), T6) → U2_agg(T16, T17, T6, memberA_in_gg(T16, T6))
memberA_in_gg(T37, .(T37, T38)) → memberA_out_gg(T37, .(T37, T38))
memberA_in_gg(T44, .(T51, T52)) → U1_gg(T44, T51, T52, memberA_in_gg(T44, T52))
U1_gg(T44, T51, T52, memberA_out_gg(T44, T52)) → memberA_out_gg(T44, .(T51, T52))
U2_agg(T16, T17, T6, memberA_out_gg(T16, T6)) → pB_out_agg(T16, .(T16, T17), T6)
pB_in_agg(X97, .(T61, T62), T6) → U3_agg(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
U3_agg(X97, T61, T62, T6, pB_out_agg(X97, T62, T6)) → pB_out_agg(X97, .(T61, T62), T6)
U4_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapC_out_gg(T5, T6)

The argument filtering Pi contains the following mapping:
overlapC_in_gg(x1, x2)  =  overlapC_in_gg(x1, x2)
U4_gg(x1, x2, x3)  =  U4_gg(x3)
pB_in_agg(x1, x2, x3)  =  pB_in_agg(x2, x3)
.(x1, x2)  =  .(x1, x2)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x1, x4)
memberA_in_gg(x1, x2)  =  memberA_in_gg(x1, x2)
memberA_out_gg(x1, x2)  =  memberA_out_gg
U1_gg(x1, x2, x3, x4)  =  U1_gg(x4)
pB_out_agg(x1, x2, x3)  =  pB_out_agg(x1)
U3_agg(x1, x2, x3, x4, x5)  =  U3_agg(x5)
overlapC_out_gg(x1, x2)  =  overlapC_out_gg

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

OVERLAPC_IN_GG(T5, T6) → U4_GG(T5, T6, pB_in_agg(X9, T5, T6))
OVERLAPC_IN_GG(T5, T6) → PB_IN_AGG(X9, T5, T6)
PB_IN_AGG(T16, .(T16, T17), T6) → U2_AGG(T16, T17, T6, memberA_in_gg(T16, T6))
PB_IN_AGG(T16, .(T16, T17), T6) → MEMBERA_IN_GG(T16, T6)
MEMBERA_IN_GG(T44, .(T51, T52)) → U1_GG(T44, T51, T52, memberA_in_gg(T44, T52))
MEMBERA_IN_GG(T44, .(T51, T52)) → MEMBERA_IN_GG(T44, T52)
PB_IN_AGG(X97, .(T61, T62), T6) → U3_AGG(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
PB_IN_AGG(X97, .(T61, T62), T6) → PB_IN_AGG(X97, T62, T6)

The TRS R consists of the following rules:

overlapC_in_gg(T5, T6) → U4_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T16, .(T16, T17), T6) → U2_agg(T16, T17, T6, memberA_in_gg(T16, T6))
memberA_in_gg(T37, .(T37, T38)) → memberA_out_gg(T37, .(T37, T38))
memberA_in_gg(T44, .(T51, T52)) → U1_gg(T44, T51, T52, memberA_in_gg(T44, T52))
U1_gg(T44, T51, T52, memberA_out_gg(T44, T52)) → memberA_out_gg(T44, .(T51, T52))
U2_agg(T16, T17, T6, memberA_out_gg(T16, T6)) → pB_out_agg(T16, .(T16, T17), T6)
pB_in_agg(X97, .(T61, T62), T6) → U3_agg(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
U3_agg(X97, T61, T62, T6, pB_out_agg(X97, T62, T6)) → pB_out_agg(X97, .(T61, T62), T6)
U4_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapC_out_gg(T5, T6)

The argument filtering Pi contains the following mapping:
overlapC_in_gg(x1, x2)  =  overlapC_in_gg(x1, x2)
U4_gg(x1, x2, x3)  =  U4_gg(x3)
pB_in_agg(x1, x2, x3)  =  pB_in_agg(x2, x3)
.(x1, x2)  =  .(x1, x2)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x1, x4)
memberA_in_gg(x1, x2)  =  memberA_in_gg(x1, x2)
memberA_out_gg(x1, x2)  =  memberA_out_gg
U1_gg(x1, x2, x3, x4)  =  U1_gg(x4)
pB_out_agg(x1, x2, x3)  =  pB_out_agg(x1)
U3_agg(x1, x2, x3, x4, x5)  =  U3_agg(x5)
overlapC_out_gg(x1, x2)  =  overlapC_out_gg
OVERLAPC_IN_GG(x1, x2)  =  OVERLAPC_IN_GG(x1, x2)
U4_GG(x1, x2, x3)  =  U4_GG(x3)
PB_IN_AGG(x1, x2, x3)  =  PB_IN_AGG(x2, x3)
U2_AGG(x1, x2, x3, x4)  =  U2_AGG(x1, x4)
MEMBERA_IN_GG(x1, x2)  =  MEMBERA_IN_GG(x1, x2)
U1_GG(x1, x2, x3, x4)  =  U1_GG(x4)
U3_AGG(x1, x2, x3, x4, x5)  =  U3_AGG(x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

OVERLAPC_IN_GG(T5, T6) → U4_GG(T5, T6, pB_in_agg(X9, T5, T6))
OVERLAPC_IN_GG(T5, T6) → PB_IN_AGG(X9, T5, T6)
PB_IN_AGG(T16, .(T16, T17), T6) → U2_AGG(T16, T17, T6, memberA_in_gg(T16, T6))
PB_IN_AGG(T16, .(T16, T17), T6) → MEMBERA_IN_GG(T16, T6)
MEMBERA_IN_GG(T44, .(T51, T52)) → U1_GG(T44, T51, T52, memberA_in_gg(T44, T52))
MEMBERA_IN_GG(T44, .(T51, T52)) → MEMBERA_IN_GG(T44, T52)
PB_IN_AGG(X97, .(T61, T62), T6) → U3_AGG(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
PB_IN_AGG(X97, .(T61, T62), T6) → PB_IN_AGG(X97, T62, T6)

The TRS R consists of the following rules:

overlapC_in_gg(T5, T6) → U4_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T16, .(T16, T17), T6) → U2_agg(T16, T17, T6, memberA_in_gg(T16, T6))
memberA_in_gg(T37, .(T37, T38)) → memberA_out_gg(T37, .(T37, T38))
memberA_in_gg(T44, .(T51, T52)) → U1_gg(T44, T51, T52, memberA_in_gg(T44, T52))
U1_gg(T44, T51, T52, memberA_out_gg(T44, T52)) → memberA_out_gg(T44, .(T51, T52))
U2_agg(T16, T17, T6, memberA_out_gg(T16, T6)) → pB_out_agg(T16, .(T16, T17), T6)
pB_in_agg(X97, .(T61, T62), T6) → U3_agg(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
U3_agg(X97, T61, T62, T6, pB_out_agg(X97, T62, T6)) → pB_out_agg(X97, .(T61, T62), T6)
U4_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapC_out_gg(T5, T6)

The argument filtering Pi contains the following mapping:
overlapC_in_gg(x1, x2)  =  overlapC_in_gg(x1, x2)
U4_gg(x1, x2, x3)  =  U4_gg(x3)
pB_in_agg(x1, x2, x3)  =  pB_in_agg(x2, x3)
.(x1, x2)  =  .(x1, x2)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x1, x4)
memberA_in_gg(x1, x2)  =  memberA_in_gg(x1, x2)
memberA_out_gg(x1, x2)  =  memberA_out_gg
U1_gg(x1, x2, x3, x4)  =  U1_gg(x4)
pB_out_agg(x1, x2, x3)  =  pB_out_agg(x1)
U3_agg(x1, x2, x3, x4, x5)  =  U3_agg(x5)
overlapC_out_gg(x1, x2)  =  overlapC_out_gg
OVERLAPC_IN_GG(x1, x2)  =  OVERLAPC_IN_GG(x1, x2)
U4_GG(x1, x2, x3)  =  U4_GG(x3)
PB_IN_AGG(x1, x2, x3)  =  PB_IN_AGG(x2, x3)
U2_AGG(x1, x2, x3, x4)  =  U2_AGG(x1, x4)
MEMBERA_IN_GG(x1, x2)  =  MEMBERA_IN_GG(x1, x2)
U1_GG(x1, x2, x3, x4)  =  U1_GG(x4)
U3_AGG(x1, x2, x3, x4, x5)  =  U3_AGG(x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBERA_IN_GG(T44, .(T51, T52)) → MEMBERA_IN_GG(T44, T52)

The TRS R consists of the following rules:

overlapC_in_gg(T5, T6) → U4_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T16, .(T16, T17), T6) → U2_agg(T16, T17, T6, memberA_in_gg(T16, T6))
memberA_in_gg(T37, .(T37, T38)) → memberA_out_gg(T37, .(T37, T38))
memberA_in_gg(T44, .(T51, T52)) → U1_gg(T44, T51, T52, memberA_in_gg(T44, T52))
U1_gg(T44, T51, T52, memberA_out_gg(T44, T52)) → memberA_out_gg(T44, .(T51, T52))
U2_agg(T16, T17, T6, memberA_out_gg(T16, T6)) → pB_out_agg(T16, .(T16, T17), T6)
pB_in_agg(X97, .(T61, T62), T6) → U3_agg(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
U3_agg(X97, T61, T62, T6, pB_out_agg(X97, T62, T6)) → pB_out_agg(X97, .(T61, T62), T6)
U4_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapC_out_gg(T5, T6)

The argument filtering Pi contains the following mapping:
overlapC_in_gg(x1, x2)  =  overlapC_in_gg(x1, x2)
U4_gg(x1, x2, x3)  =  U4_gg(x3)
pB_in_agg(x1, x2, x3)  =  pB_in_agg(x2, x3)
.(x1, x2)  =  .(x1, x2)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x1, x4)
memberA_in_gg(x1, x2)  =  memberA_in_gg(x1, x2)
memberA_out_gg(x1, x2)  =  memberA_out_gg
U1_gg(x1, x2, x3, x4)  =  U1_gg(x4)
pB_out_agg(x1, x2, x3)  =  pB_out_agg(x1)
U3_agg(x1, x2, x3, x4, x5)  =  U3_agg(x5)
overlapC_out_gg(x1, x2)  =  overlapC_out_gg
MEMBERA_IN_GG(x1, x2)  =  MEMBERA_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBERA_IN_GG(T44, .(T51, T52)) → MEMBERA_IN_GG(T44, T52)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEMBERA_IN_GG(T44, .(T51, T52)) → MEMBERA_IN_GG(T44, T52)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MEMBERA_IN_GG(T44, .(T51, T52)) → MEMBERA_IN_GG(T44, T52)
    The graph contains the following edges 1 >= 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PB_IN_AGG(X97, .(T61, T62), T6) → PB_IN_AGG(X97, T62, T6)

The TRS R consists of the following rules:

overlapC_in_gg(T5, T6) → U4_gg(T5, T6, pB_in_agg(X9, T5, T6))
pB_in_agg(T16, .(T16, T17), T6) → U2_agg(T16, T17, T6, memberA_in_gg(T16, T6))
memberA_in_gg(T37, .(T37, T38)) → memberA_out_gg(T37, .(T37, T38))
memberA_in_gg(T44, .(T51, T52)) → U1_gg(T44, T51, T52, memberA_in_gg(T44, T52))
U1_gg(T44, T51, T52, memberA_out_gg(T44, T52)) → memberA_out_gg(T44, .(T51, T52))
U2_agg(T16, T17, T6, memberA_out_gg(T16, T6)) → pB_out_agg(T16, .(T16, T17), T6)
pB_in_agg(X97, .(T61, T62), T6) → U3_agg(X97, T61, T62, T6, pB_in_agg(X97, T62, T6))
U3_agg(X97, T61, T62, T6, pB_out_agg(X97, T62, T6)) → pB_out_agg(X97, .(T61, T62), T6)
U4_gg(T5, T6, pB_out_agg(X9, T5, T6)) → overlapC_out_gg(T5, T6)

The argument filtering Pi contains the following mapping:
overlapC_in_gg(x1, x2)  =  overlapC_in_gg(x1, x2)
U4_gg(x1, x2, x3)  =  U4_gg(x3)
pB_in_agg(x1, x2, x3)  =  pB_in_agg(x2, x3)
.(x1, x2)  =  .(x1, x2)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x1, x4)
memberA_in_gg(x1, x2)  =  memberA_in_gg(x1, x2)
memberA_out_gg(x1, x2)  =  memberA_out_gg
U1_gg(x1, x2, x3, x4)  =  U1_gg(x4)
pB_out_agg(x1, x2, x3)  =  pB_out_agg(x1)
U3_agg(x1, x2, x3, x4, x5)  =  U3_agg(x5)
overlapC_out_gg(x1, x2)  =  overlapC_out_gg
PB_IN_AGG(x1, x2, x3)  =  PB_IN_AGG(x2, x3)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PB_IN_AGG(X97, .(T61, T62), T6) → PB_IN_AGG(X97, T62, T6)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
PB_IN_AGG(x1, x2, x3)  =  PB_IN_AGG(x2, x3)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PB_IN_AGG(.(T61, T62), T6) → PB_IN_AGG(T62, T6)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PB_IN_AGG(.(T61, T62), T6) → PB_IN_AGG(T62, T6)
    The graph contains the following edges 1 > 1, 2 >= 2

(22) YES